블로그 이미지
pgmr이상현
Instagram:sh_lee77 머신비전, YOLO, 영상처리, Deep Learning, 딥러닝

calendar

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Notice


구글의 알파고로 AI또는 Deep Learning에 대한 사람들의 관심이 뜨거웠습니다.

저 또한 신기하고 놀라웠습니다. 갑자기 주제 이야기를 하다가 왜 알파고를 이야기

하나 의아 하실 수 있는데 아이디어는 여기서부터 시작 됩니다.

Deep Learning의 방향은 여러 방향이 있겠지만, 그중 이미지 학습이 있는데요.
이 이미지 학습을 통해서 야생동물인 고라니 또는 멧돼지를 학습시켜 인식을 하면

어떨까? 라는 생각을 하면서 

Deep Learning(YOLO)기반의 Smart Scarecrow를 개발하는 계기가 됩니다.


또 작년부터 지도교수님이 보여주시고 알려주셨던,

NVIDIA의 Cat Chaser 또한 개발의 계기가 됩니다. 

(cat chaser클릭 시 NVIDIA cat chaser페이지로 이동)

Cat Chaser는 엔비디아 엔지니어인 로버트 본드가 자택 부지에 대변을 보는 고양이가 끊이지 않는다는 점을 해결하기 위해 고양이만 쫓아내기 위해 만든 시스템입니다. 이 시스템은 IP 카메라를 이용해 정원을 7초 간격으로 모니터링한다. 촬영한 사진 처리는 엔비디아의 임베디드 모듈 시스템인 젯슨 TX1(Jetson TX1)을 이용했다. 여기에 딥러닝 기술(FCN)을 더해 고양이 사진을 대량으로 학습해 정원에 침입한 고양이를 확실하게 감지해낸다고 한다.

이 시스템이 고양이를 찾게 되면 와이파이를 이용해 정원으로 신호를 보내고 스프링클러를 자동으로 작동시킨다. 이러한 Deep Learning 학습기술과 어떠한 Action을 취하면 야생동물을 쫓아낼 수 있지 않을까 생각을 하며 개발을 시작하게 됩니다.


Cat Chaser의 시스템 구성도는 다음과 같습니다.

1. IP카메라를 이용해 정원을 촬영합니다.

2. 촬영중인 영상을 Photon Server로 보내줍니다.

3. Photon Server는 Jetson TX1으로 영상을 보내줍니다.

4. Jetson TX1은 FCN Algorithm을 통해서 고양이의 유무를 확인한 뒤 다시 Photon Server로 결과를 전송합니다.

5. Photon Server는 고양이의 유무에 따라 스프링클러의 작동여부를 결정합니다. 


다시 처음으로 돌아가서 개발배경인 야생동물로 인한 농작물피해에 대해 조사를 해보게 되었습니다.

5년간 643억원의 농작물 피해로 연간 100억원이 넘는 피해입니다. 야생동물로 인한 농작물 피해가 상당하다는 것을 알수 있습니다.


아래 영상은 현재 아마존에서 판매되고 있는 유사제품입니다. 

시청하시고 문제점이 무엇인지 확인해 봅시다.

현재 아마존에서 판매하고있는 제품들은 모두 동작감지센서로 작동합니다.

그렇기에 사람이 앞에 지나가도 동작을 감지하고 스프링클러를 작동시켜 사람에게도

피해를 주는것을 알 수 있습니다. 그렇기에 이러한 문제점을 해결하기위해 야생동물만을 인식하고 쫓아내는 Deep Learning(YOLO)기반의 Smart Scarecrow로 졸업작품 주제로 선정하게 됩니다.

posted by pgmr이상현