블로그 이미지
pgmr이상현
Instagram:sh_lee77 머신비전, YOLO, 영상처리, Deep Learning, 딥러닝

calendar

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Notice

2018. 11. 21. 20:42 TensorFlow Study
안녕하세요, 이상현입니다.

지난 포스팅에서 환경 구축을 끝맞치고, TensorFlow가 정상 동작하는지, 확인을 할 때
Welcome to TensorFlow를 출력 했습니다.

오늘은 그 코드에 대해서 설명을 해보려고 합니다.

import tensorflow as tf
 
welcome =tf.constant("Welcome to TensorFlow!!")
 
sess = tf.Session()
 
sess.run(welcome)

코드는 위와 같습니다.


1. tf.constant

먼저 tf.constant를 설명을 하겠습니다.


위 코드를 보시면 welcome은 프로그래밍을 해보신 분들은
모두가 변수라는 사실을 알 것 입니다.

그렇다면 welcome을 바로 출력을 해보겠습니다.


welcome =tf.constant("Welcome to TensorFlow!!")
print (welcome)


이렇게 출력을 하게되면 일반적으로 프로그래밍을 해보신 분들은 당연히,

Welcome to tensorflow!!가 출력되겠지 라고 생각하셨을텐데 아닙니다.


Tensor("Const:0", shape=(), dtype=string)

위와 같이 출력이 됩니다.


Tensor는 TensorFlow에서 사용하는 자료형입니다.

Const는 n차원 이라고 생각하시면되며, shape는 차원이 가지고 있는 요소의 수입니다.

dtype은 보시고 다들 아셨겠지만 datatype으로 현재는 string으로 문자열입니다.


한가지만 더 해보겟습니다.


a = tf.constant(10)
b = tf.constant(5)
c = tf.constant(5)
d = tf.add(a,b,c)


print (d)

위와 같은 코드를 작성을 하였을 때는 값이 어떻게 나올까요?

20이라는 값이 나올꺼라고 생각을 하시겠지만, 위에서 부터 차례대로 글을 읽으신 분들이라면 20이라고 생각을 안하셨겠죠?

바로

Tensor("Add:0", shape=(), dtype=int32)

위에서 welcome과는 모두가 같지만 dtype만 int를 가지는 것을 확인할 수 있습니다.


자 그렇다면 어떻게 welcome변수와 d가 가지고 있는 Tensor를 어떻게 출력을 할까요?

바로 바로 Session입니다. Session으로 넘어가 보도록 하겠습니다.


2. tf.Session

실질적으로 연산을 수행하는 곳은 바로 tf.Session입니다.

그러면 바로 Session과 run을 이용해서 출력을 해보겠습니다.

sess = tf.Session()


sess.run(welcome)
sess.run(d)


이렇게 Session을 이용해 Tensor들의 연산을 수행했을 때

welcome의 welcome to TensorFlow!!  <--출력 결과와

d의 20 <--이라는 출력 값을 얻을 수 있습니다.


자 이렇게 TensorFlow의 기초인 tf.constant와 tf.Seesion을 간단하게 배워보았습니다.

실습을 통해서 다들 해보시기바랍니다.


감사합니다.

posted by pgmr이상현
2018. 11. 14. 20:48 TensorFlow Study

안녕하세요, 이상현입니다.


이번 포스팅에서는 지난 포스팅에 이어서

개발환경 구축을 이어서 진행을 하겠습니다.

이번 포스팅에서는 NVIDIA GPU를 활용하기 위한 CUDA, cuDNN설치가 되겠습니다.


1. CUDA Toolkit 설치하기

CUDA Toolkit Download  <-- Click


운영체제를 선택합니다. 저는 Window를 기반으로 설치하기 때문에 Window를 선택합니다.

Version을 선택합니다. Version은 자신의 운영체제에 맞게 32비트 64비트 선택합니다.

Installer Type을 선택합니다.

Down load를 클릭합니다.

경로를 선택합니다.

시스템 호환성을 검사합니다.

동의 클릭

다음 클릭

설치를 진행합니다.

다음 클릭

지금 다시 시작 클릭


2. cuDNN 설치하기

cuDNN Download  <-- Click

Download cuDNN 클릭

Join now 클릭

회원가입을 진행합니다. email을 인증하면 회원가입이 됩니다.

그럼 다시 처음부터 cuDNN클릭을 합니다.

간단하게 Survey를 진행합니다.

동의 클릭

CUDA Version에 맞는 cuDNN을 설치합니다.

우리는 CUDA 9.0을 설치했기에, 

Download cuDNN v7.1.3 [April 17, 2018], for CUDA 9.0을 클릭

운영체제 Version에 맞게 다운 받습니다.

압축을 풀면 cuda directory안의 bin Directory를 들어가면 dll이 있습니다.

cudnn64_7.dll 파일을 아래의 경로에 넣어줍니다.

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin

ANACONDA를 실행합니다.

import tensorflow as tf

welcome =tf.constant("Welcome to TensorFlow!!")

sess = tf.Session()

sess.run(welcome)


위 코드를 입력하여 TensorFlow가 정상 동작하는지 확인합니다.


Welcome to TensorFlow!!가 출력되는 것을 확인할 수 있습니다.

위 코드는 다음 게시물에서 설명하겠습니다.


이것으로 Tensorflow 개발환경 구축하기를 마무리 하겠습니다.

감사합니다.

posted by pgmr이상현
2018. 11. 14. 20:02 TensorFlow Study

안녕하세요, 이상현입니다.


이번에 TensorFlow공부를 시작해 보려고합니다.


공부를 하면서 알게되는 내용 공유를 하려고하니, 잘 봐주셨으면 좋겠습니다.



TensorFlow?

Tensorflow는 Machine Learning과 Deep Learning연구를 목적으로,
구글의 연구조직인 구글 브레인 팀의 연구자와 엔지니어들에 의해 개발된
Deep Learning Open Source Library입니다.

Why Tensorflow? 

* 발달된 Community

 - Tensorflow는 가장 활성화 되어있는 Deep Learning Open Source Library입니다.

Pytorch, caffe, Theano, Keras등 많은 Library가 있지만 그중에서도 가장 활성화된 Library가 바로 TensorFlow입니다. 예를 들어 Facebook의 Tensorflow kr라는 커뮤니티가 활성화
되어있으며, 새로운 논문이 
나올때에도 가장 먼저 Open Source로 나오는 것이 바로Tensorflow입니다.


그러면 오늘은 간단하게 TensorFlow의 환경구축을 먼저 시작하겠습니다.

저의 환경은 아래와 같습니다.

Window 10-64bit

Anaconda3 5.1.0-64bit

Tensorflow 1.8.0

Python 3.6.4



1. ANACONDA 가상환경 설치


* ANACONDA 설치 이유
 - Anaconda는 600만명이 넘는 사용자들을 보유하고 있으며, 250개가 넘는 패키지들이 내포되어 있어, 번잡하게 환경을 구축할 필요 없이 개발을 손 쉽게 할수있습니다.


* 독립성

 - 가상환경을 여러개를 만들 수 있어, 각각 독립적으로 환경을 다르게 구축할 수 있습니다.


Anaconda설치  <--Click

왼쪽 하단의 Python 3.6 Version Download를 클릭합니다.


Next

I Agree

Just Me 클릭 Next 클릭

Next

Install

설치 진행중

Next

Skip 클릭

Anaconda의 설치가 완료 되었습니다.

좌측 하단의 돋보기 모양 검색버튼을 클릭후 Anaconda를 검색합니다.

그러면 위와 같이 Anaconda Prompt가 보이게됩니다. 실행시켜 줍니다.

실행이 되었습니다.

PiP를 이용, TensorFlow GPU Version을 설치합니다.

pip install tensorflow-gpu 입력합니다.

NVDIA의 GPU를 사용하지 않는 PC의 경우는 CPU Version으로 설치합니다.

pip install tensorflow 입력합니다.

import tensorflow 입력합니다.

CPU Version을 설치하신 분들은 정상적으로 작동이됩니다.

허나 GPU Version으로 설치하신 분들은 Error가 발생하게 됩니다.


GPU Version을 잘못 설치를 한게 아닌 CUDA와 cuDNN을 설치하지 않아서 나오는 Error입니다.

GPU Version을 설치하신 분들에 한해서 2번째 환경구축 게시물로 이동하시면 되겠습니다.

감사합니다.

posted by pgmr이상현
prev 1 next